
Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

39 

Containers

5 Containers
5.1 Introduction

Simple abstract data types are useful for manipulating simple sets of values, like integers or real numbers, 
but more complex abstract data types are crucial for most applications. A category of complex ADTs 
that has proven particularly important is containers.

Container: An entity that holds finitely many other entities.

Just as containers like boxes, baskets, bags, pails, cans, drawers, and so forth are important in everyday 
life, containers such as lists, stacks, and queues are important in programming.

5.2 Varieties of Containers

Various containers have become standard in programming over the years; these are distinguished by 
three properties:

Structure—Some containers hold elements in some sort of structure, and some do not. Containers 
with no structure include sets and bags. Containers with linear structure include stacks, queues, 
and lists. Containers with more complex structures include multidimensional matrices.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

40 

Containers

Access Restrictions—Structured containers with access restrictions only allow clients to add, remove, 
and examine elements at certain locations in their structure. For example, a stack only allows 
element addition, removal, and examination at one end, while lists allow access at any point. A 
container that allows client access to all its elements is called traversable, enumerable, or iterable.

Keyed Access—A collection may allow its elements to be accessed by keys. For example, maps 
are unstructured containers that allows their elements to be accessed using keys.

5.3 A Container Taxonomy

It is useful to place containers in a taxonomy to help understand their relationships to one another and as 
a basis for implementation using a class hierarchy. The root of the taxonomy is Container. A Container 
may be structured or not, so it cannot make assumptions about element location (for example, there 
may not be a first or last element in a container). A Container may or may not be accessible by keys, so 
it cannot make assumptions about element retrieval methods (for example, it cannot have a key-based 
search method). Finally, a Container may or may not have access restrictions, so it cannot have addition 
and removal operations (for example, only stacks have a push() operation), or membership operations.

The only things we can say about Containers is that they have some number of elements. Thus a 
Container can have a size() operation. We can also ask (somewhat redundantly) whether a Container 
is empty. And although a Container cannot have specific addition and removal operations, it can have 
an operation for emptying it completely, which we call clear().

A Container is a broad category whose instances are all more specific things; there is never anything that 
is just a Container. In object-oriented terms, a Container is an interface, not a class. These considerations 
lead to the UML class diagram in Figure 1 below.

«interface» 
Container

size() : integer
empty?() : Boolean
clear()

Figure 1: The Container Interface

There are many ways that we could construct our container taxonomy from here; one way that works 
well is to make a fundamental distinction between traversable and non-traversable containers:

Collection: A traversable container.

Dispenser: A non-traversable container.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

41 

Containers

Collections include lists, sets, and maps; dispensers include stacks and queues. With this addition, our 
container hierarchy appears in Figure 2.

Figure 2: Top of the Container Taxonomy

Dispensers are linearly ordered and have access restrictions. As noted, Dispensers include stacks 
and queues. We turn in the next chapter to detailed consideration of these non-traversable containers.

5.4 Interfaces in Ruby

Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot 
be instantiated. Although Ruby is object-oriented, it does not have interfaces. Interface-like classes can 
be constructed in Ruby by creating classes whose operations have empty bodies. These pseudo-interface 
classes can be used as super-classes of classes that implement the interface. Pseudo-interface classes can 
still be instantiated, and their operations can still be called without overriding them, so they are only a bit 
like real interfaces. One way to make them more like interfaces, however, is to implement the operations 
in the pseudo-interface so that they raise exceptions if they are called. This forces sub-classes to override 
the operations in these pseudo-interface classes before they can be used.

This is the approach we will take in implementing interfaces in Ruby: we will make super-classes whose 
operations raise NotImplementedError exceptions. Classes implementing a pseudo-interface will 
then have to inherit from it and override its operations.

5.5 Review Questions

1. Are sets structured? Do sets have access restrictions? Do sets have keyed access?
2. If c is a Container and c.clear() is called, what does c.empty?() return? What does 

c.size() return?
3. What would happen if you tried to instantiate a pseudo-interface class implemented as 

suggested above in Ruby?

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

42 

Containers

5.6 Exercises

1. Consider a kind of Container called a Log that is an archive for summaries of transactions. 
Summaries can be added to the end of a Log, but once appended, they cannot be deleted or 
changed. When a summary is appended to a Log, it is time-stamped, and summaries can be 
retrieved from a Log by their time stamps. The summaries in a Log can also be examined in 
arbitrary order.
a) Is a Log structured? If so, what kind of structure does a Log have?
b) Does a Log have access restrictions?
c) Does a Log provide keyed access? If so, what is the key?
d) In the container hierarchy, would a Log be a Collection or a Dispenser?

2. Consider a kind of Container called a Shoe used in an automated Baccarat program. 
When a Shoe instance is created, it contains eight decks of Cards in random order. Cards 
can be removed one at a time from the front of a Shoe. Cards cannot be placed in a Shoe, 
modified, or removed from any other spot. No Cards in a Shoe can be examined.
a) Is a Shoe structured? If so, what kind of structure does a Shoe have?
b) Does a Shoe have access restrictions?
c) Does a Shoe provide keyed access? If so, what is the key?
d) In the container hierarchy, would a Shoe be a Collection or a Dispenser?

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

43 

Containers

3. Consider a kind of Container called a Randomizer used to route packets in an 
anonymizer. Packets go into the Randomizer at a single input port, and come out randomly 
at one of n output ports, each of which sends packets to different routers. Packets can only 
go into a Randomizer at the single input port, and can only come out one of the n output 
ports. Packets come out of a single output port in the order they enter a Randomizer. 
Packets cannot be accessed when they are inside a Randomizer.
a) Is a Randomizer structured? If so, what kind of structure does a Randomizer have?
b) Does a Randomizer have access restrictions?
c) Does a Randomizer provide keyed access? If so, what is the key?
d) In the container hierarchy, would a Randomizer be a Collection or a Dispenser?

5.7 Review Question Answers

1. Sets are not structured—elements appear in sets or not, they do not have a position or 
location in the set. Sets do not have access restrictions: elements can be added or removed 
arbitrarily. Elements in sets do not have keys (they are simply values), so there is no keyed 
access to elements of a set.

2. When a Container c is cleared, it contains no values, so c.empty?() returns true, and 
c.size() returns 0.

3. A pseudo-interface class implemented in Ruby with operations that raise 
NotImplementedError exceptions when they are called could be instantiated without 
any problem, but such objects could not be used for anything useful. The only thing 
that such a class would be good for would be as a super-class of classes that override its 
operations, which is pretty much what an interface is good for as well.

http://bookboon.com/

